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LIQUID CRYSTALS, 1990, VOL. 8, No. 3, 331-343 

Stationary states of the surface stabilized ferroelectric liquid crystal 
layers in electric field 

by G. DERFEL 
Institute of Physics, Technical University of t b d i ,  93-005 t b d i ,  Poland 

(Received 16 January 1990; accepted 21 April 1990) 

Stationary states of surface stabilized ferroelectric liquid crystal layers in an 
electric field are analysed by use of the Taylor expansion method based on 
catastrophe theory. Two kinds of director distribution within the flat smectic 
layers are taken into account: the uniform and the presplayed one. The butterfly 
catastrophe describes the properties of the cells correctly. The results have a 
qualitative character. Two categories of transitions can be predicted: switching 
between stable states characterized by opposite uniform orientations of the polar- 
ization vectors, and deformation of the director field which relaxes after removing 
the field. The threshold field strengths are found and the role of the system 
parameters is investigated. 

1. Introduction 
Ferroelectric liquid crystals offer a very attractive possibility for applications in 

display devices invented by Clark and Lagerwall [I]. Electrooptic effects utilized in'the 
displays are being studied intensively both experimentally and theoretically. The 
switching processes usually involve the nucleation and growth of domains bounded 
by disclination loops. These complicated phenomena require a two dimensional 
analysis at  least, and have so far been treated theoretically in an approximate way 
[2,3]. The stationary states can be considered as one dimensional problems. They were 
investigated from the viewpoint of elastic continuum theory, e.g. in [4-81. A one 
dimensional approach was also applied to the dynamics of the switching process in 
which director rotation was assumed [9-121. Such an effect was observed [13], and can 
yield high quality displays [ 141. Several variants of the ferroelectric cells have been 
examined, using different assumptions concerning the director distribution. In this 
paper, the qualitative characteristic of the static properties of the ferroelectric liquid 
crystal layer, due to various geometric and material parameters, is obtained by the 
method based on catastrophe theory [15]. This method is valuable in determining the 
number and kind of critical points of the function considered. It predicts the equilibrium 
states of the system and investigates their stability. It allows us to recognize the 
character of the critical phenomena which can take place in external electric fields; its 
application has been described in [16, 17,181. 

Two simple systems consisting of flat smectic layers are taken into account: a 
structure (tilted or not) with a uniform director field resulting from non-polar surface 
interactions and a structure with a presplayed director resulting from polar surface 
interactions. The helicoidal structure is assumed to be suppressed by the boundary 
surfaces. To  aid in the proper interpretation of further results, the oversimplified 
model of highly stiff chiral smectic C is first considered in $2. The method used in this 
paper is presented in $3. Geometries with the smectic layers perpendicular to the 
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332 G. Derfel 

boundary plates are considered in &I. In 45 the effect of layer tilt is described. 
Section 6 contains a short discussion of the result. The usual approximations are 
made: the biaxiality of the chiral smectic C phase is neglected, no influence of the 
electric field on the smectic C tilt angle, o, and no distortion of the smectic layers are 
taken into account. The effect of the space charge, due to non-zero divergence of the 
spontaneous polarization, is included approximately into the electric field strength. 
However, for tilted smectic layers, VP = 0 is assumed in order to avoid calculational 
complexity. 

2. The simplified model 
The attractive bistability of the surface stabilized ferroelectric liquid crystal displays 

is based on a suitable interaction between the liquid crystal and the boundary 
surfaces. This interaction can be described by the surface energy 

G = -rl(B.S)2 - y 2 P . S ,  (1) 

where B = P/I PI and 1 is the outward surface normal unit vector. The coefficients 
yI and y2 describe the non-polar and polar interactions, respectively. The role of the 
curvature elasticity of the liquid crystal is not crucial for the principle of operation of 
the display. This is exemplified by the simple model in which the very stiff material 
stabilized by non-polar interactions (y2 = 0), is taken into account. In order to retain 
only the essential features of the effect, the electric energy due to the dielectric 
anisotropy is neglected in comparison to the energy due to the spontaneous polariz- 
ation. The smectic layers are parallel to the yz  plane and perpendicular to the 
boundary plates which are placed at z = k d / 2 .  The state of the cell is completely 
determined by the angle 4, common for the whole volume, measured anticlockwise 
between P and the z axis (see figure 1 (a)). - I I 

I 

I I 

d 
2 

0 

-P 
2 

-0.4 0 R4 -0.4 0 0.4 

u / v  
Figure 1. The deformation of an infinitely stiff material. (a) The geometry of the stiff liquid 

crystal layer. (6) The angle as a function of the applied voltage U obtained analytically. 
(c) The set of dual cusp catastrophes equivalent to the analytical solution. 
d = 2 x 10-6m, P = 1 x 10-4C/m2, y ,  = 1 x lO-’N/m (full line, minima: dotted 
line, maxima). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
3
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Stationary states in ferroelectrics 333 

The energy per unit area of such a sample is given by 

G = -dPEcos4 - ~ Y , C O S ~ $ .  (2) 

4 = +kn, (3) 

4 = +arccos(-dPE/4yI) + kn, (4) 

It possesses extremes for 

and for 

where k is zero or integer. The equilibrium states are realized for the solutions (3) but 
only in suitable ranges of the electric field strength (see figure 1 (b)). The transitions 
between two equilibrium states, e.g. 4 = 0 and 4 = n occur discontinuously at 
threshold fields determined by 

E, = +4y,/dP. ( 5 )  

The same problem can be resolved by use of the power expansion of free energy of 
the layer in terms of 4 in the vicinity of 4 = 0; namely 

where 

and 

G = a24* + a44, + . . . , 

a2 = dPE/2 + 2y, 

a, = -dPE - 16y, .  

A degenerate critical point exists at E, = - 4y,/dP and a, is always negative at  this 
point. Therefore we have to deal with the dual cusp catastrophe. The analogous 
results are obtained for other critical points determined by k # 0 in equation (3). The 
dual cusps due to each of them form a sequence suggested by figure 1 (b) and shown 
in figure 1 (c). In some more complicated cases, which are considered in the following 
sections, a similar sequence of suitable catastrophes is realized resulting in bistability 
of the layer. 

3. Method 
The deformation of the director field in the layer is modelled by a simple function 

of three angles, which are required for the determination of the director position at 
the top boundary, bottom boundary and inside the layer. They are denoted by x. I(/ 
and (, respectively. The function should represent all of the essential topological 
features of the real director distribution. By use of this model function, the approxi- 
mate free energy G(x, I(/, <) per unit area of the sample is derived. The critical points 
of G are found, i.e. the points (1, I(/, () for which the first derivatives vanish. The 
degeneracy of these points is investigated. If the determinant of the matrix of the 
second derivatives H: 

H =  (9) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
3
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



334 G. Derfel 

can be made to vanish by a suitable choice of parameters (e.g. the strength of the 
electric field), then the critical point considered is degenerate, and the system has some 
interesting properties in its vicinity. The energy G is expanded in a Taylor series in the 
neighbourhood of the critical point 

After proper normalization, the expanded function G can be reduced to one of the 
catastrophes. The normalization procedure includes the diagonalization of the matrix 
H and elimination of the inessential variables [ 151. Diagonalization is carried out by 
use of the transformation 

The coefficients of the transformation are, in general, found numerically, as the 
equations leading to them are of third order. Among variables u, v, w,  these are 
essential, for which the second derivatives vanish at  the critical point and for the 
critical set of parameters. In the cases considered later there is only one essential 
variable. The free energy G is then equivalent to a function 

G = (a2G/ar21c": .poin:)rZ + (a2G/aS21cri:.point)s2 

+ a,t + a2t2 + a3t3 + a,t4 + a,ts + a6t6, (12) 

where r and s denote the inessential variables and t the essential one. The critical 
behaviour of the system is described sufficiently by the expansion in t .  The coefficients 
of this expansion are derived during the normalization procedure [ 151 and are expressed 
by aijk and cij .  Only the even coefficients are present if the smectic layers are not tilted. 
Their complicated form makes the analytical consideration of the role of system 
parameters impossible; numerical examples must be studied for this purpose. Also the 
truncation of the Taylor series is made after numerical checking which coefficient 
cannot be made to vanish for any set of typical parameters for the chiral smectic C 
phase. For the deformations due to the coupling of the spontaneous polarization with 
the electric field, the coefficient a6 is the first which does not vanish at  the threshold. 
It means that terms of order higher than six may be disregarded, and that the butterfly 
catastrophe is suitable for the description of the system in the vicinity of the corre- 
sponding critical point. For the deformations which have a dielectric origin, the first 
non-vanishing coefficient at the threshold is a,. The series can be truncated at  the 
fourth term and the cusp catastrophe results. 

The dependence of x,  $ and ( on the electric field strength or on the applied 
voltage is found by minimizing G and application of transformation (I 1). Several 
distinct cases of the z ( E ) ,  $ ( E )  and ( ( E )  functions are described. They are obtained 
for some sets of system parameters which are plausible in practice. 

4. Smectic layers perpendicular to the boundary plates 
The geometry of this structure is shown in figure 2. The director distribution is 

described by the azimuthal angle @(z) and the function O(z) can be expressed as a sum 
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Stationary states in ferroelectrics 335 

4 
Figure 2. The definition of the angles x ,  JI, and 4. 

of two terms 

@(Z) = k(x - $)/d + ( x  + $)/4 + tcos(nz/d). (13) 

The first term approximates the director distribution resulting from the actual values 
of the boundary angles x and $ (for z = d/2 and z = -d/2 respectively). The 
deviation from this distribution is described by the second term. Its form is limited to 
the first Fourier component with amplitude t. This approximate expression possesses 
all of the essential features of the real distribution and is sufficient for qualitative 
considerations based on catastrophe theory. The material is characterized by the 
smectic C tilt angle, w, the spontaneous polarization, P, the dielectric anisotropy, A&, 
and the perpendicular component of the dielectric constant E ~ .  A single elastic 
constant, B, is assumed. 

The total free energy per unit area of the layer is now given by 

G = [::2 k(d@/dz)’ - EoAEE2sin20 sin2@ - 2PEcos@ 

- [ ( [:d:2 cos @ d z r  - cos2 @] dz 
E Q E l  

- y,(cos2x + COS’JI) - y2(c0sx - COSJI). . (14) 

In this expression the dependence of the dielectric permittivity on z is neglected, where 
convenient, E,, = E ~ ;  this is justified for low dielectric anisotropy. With this assumption, 
the voltage U applied across the layer can be expressed as U = Ed. 

4.1. Structure stabilized by polar surface interactions 
The polar surface interactions result in the spontaneous splay of the polarization 

vector, as proposed in [4]. Two sets of critical points of the function G can be 
distinguished. The first corresponds to the uniform director field: x = 0, $ = 0, 
< = 0 and the second is due to the splayed state. Unfortunately the critical values of 
the angles x ,  JI, < cannot be found analytically in the latter state. In consequence, its 
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336 G. Derfel 

deformations cannot be described by means of the approach adopted here. Therefore, 
in order to investigate the behaviour of the layer, the function G is expanded in a 
Taylor series in the vicinity of only one critical point determined by x = $ = t = 0. 
Only the even powers are present in this expansion. 

The determinant of the second derivative matrix vanishes for some sets of par- 
ameters and so the critical point x = $ = t = 0 is degenerate. The critical values of 
the electric field, E,, are the most interesting critical parameters. The values of E, near 
E = 0 play the role of threshold field strengths for the deformations. The equations, 
from which the diagonalization matrix and the threshold fields can be derived, are of 
third degree and can only be solved numerically. The threshold field may be negative 
(downward) or positive (upward) or there may be two thresholds with both signs. 

The behaviour of the system results from the balance of electric, elastic and surface 
forces. Several distinct types of deformation can be distinguished; they are shown in 
figures 3 , 4  and 5. In figure 3, the curves for x(V)  and $ ( V )  are constructed according 
to the relations resulting from the symmetry of the layer, 

x ( V )  = 7I  - $ ( - U ) .  (15) 

The curve for x ( V )  can be obtained from $ ( V )  by turning it upside-down. The curves 
show the angle at the bottom plate, $ ( V ) ,  and the angle in the middle of the layer, 
$ ( V )  = [ x ( U )  + I,h(V)]/2 + t (V).  The plots are symmetric about the axes I,h = 0 
and 4 = 0. Only the positive deformations are shown and the extremes other than 
the minima are omitted. 

In our approach, only the behaviour in the vicinity of the critical point defined by 
x = I) = { = 0 and E = E, is predicted correctly. The deformation of the splayed 

0 0.5 -05 0 05 -1 0 1 -5 0 5 

u /  v 
The deformation angles at the lower boundary plate, $, and in the middle of the 

layer, 4, as a function of the applied voltage. B = 2 x lo-’* N, P = 1 x C/m2, 
yI  = 1 x 10-6N/m, IN = O.4rad, d = 2 x 10-6m, AE = - 2  and E~ = 6. (u) y2  = 
1 x N/m; (b) y2 = 2.5 x 10-6N/m; (c) y2 = 5 x 10-6N/m; ( d )  y2 = 1 x N/m, 

Figure 3. 

y ,  = 2 x 10-”/m. 
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Stationary states in ferroelectrics 337 

Figure 4. The deformed state realized without bistability (a) and with bistability (b). 
B = 2 x 10-I2N, P = I x 10-’C/m2, w = 0.4rad, y2 = 1 x 10-6N/m, d = 2 x 
10-6m and E* = 8. (a) y I  = 3 x lO-’N/m, As = -4; (b) yI  = 1 x IO-’N/m, 
As = - 2. The same curves serve as an illustration of the deformation for y2  = 0. 

3 4 5 
UIV 

Figure 5.  The dependence of the dielectric deformation on the voltage. B = 2 x 10-I’ N, 
P = 1 x 10-’C/m2, As = 4, w = 0-4rad, yI  = 1 x 10-6N/m, y2 = 0, d = 2 x 10-6m 
and E~ = 8. 

state cannot be investigated. In some cases however, the splayed state and its develop- 
ment are revealed by the curves calculated for the critical point considered. 

The uniform state is obtaned in the field strength range in which the set of 
inequalities 

a,, ’ 0, (16) 
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338 G. Derfel 

is satisfied. For E = 0 this set is reduced to the condition 

4Byl/d -k 4y: - 7: > 0 (19) 

which ensures the stability of the uniform state in the absence of the field, and is 
equivalent to the relation found earlier [5, lo]. 

The switching transitions occur between two uniform states with opposite directions 
of P. Several variants of this transition are possible; the examples are shown in figure 
3 where they are ordered according to increasing y 2 .  The curves for the splayed state 
are approximate and acceptable only near the thresholds; their central parts have only 
illustrative significance. The following properties of the system can be distinguished, 
starting from low values of y2. 

(i) The uniform state can be absolutely stable. No information on the stability 
of the splayed state can be obtained. The following set of parameters gives an 
example: B = 2 x 10-I2N, P = 10-6C/m, y I  = 10-’N/m,y2 = 10-6N/m, 
w = 0.4rad, d = 2pm, Ae = -2  and el = 8. 

(ii) Switching between uniform states can occur directly, (see figure 3 (a ) ) .  
(iii) The splayed state may be attained from the uniform state (see figures 

3 (b),  (c), ( d ) ) .  For moderate y2, tristability is predicted in the absence of the 
field: two uniform states and the splayed state are stable (see figure 3 (b)).  For 
higher y 2 ,  the discontinuous transition is possible (see figure 3 (c)). This case 
corresponds to the situation considered in [4,5]. The hysteresis can disappear 
by suitable relation between y ,  and y2 (see figure 3 ( d ) ) .  

(iv) The unidirectional transition from the uniform state to the splayed state may 
occur at  the critical field if the polar surface interactions are sufficiently 
strong. I t  may happen only once, since the splayed state is stable at  any field. 
Such a property is suggested by the results obtained, but should be verified 
by another method, since the present approach is not applicable far from the 
critical points. 

(v) The uniform state is unstable at any field and only the splayed state is 
realized. This situation occurs for strong polar interactions, e.g. if B = 2 x 
10-’*N, P = 10-’C/m2, y ,  = 10-6N/m, y2 = 10-4N/m, w = 0.4, d = 
2pm, Ae = 5 and el = 8. 

Another type of deformation leads from the uniform state to the deformed one, 
which relaxes after removing the field. This takes place if y I  is sufficiently high. The 
transition can be continuous (see figure 4 (a ) )  or discontinuous (see figure 4 (b) ) .  

Figure 5 shows the transition due to the dielectric coupling which takes place 
if A& > 0. The deformations always develop continuously according to the cusp 
catastrophe. 

4.2. Structure stabilized by non-polar surface interactions 
If the polar forces can be neglected, y2 = 0, the director field is uniform in the 

undeformed sample. There exists only one critical point x = 0, t,b = 0, t = 0; it is 
degenerate, as detH = 0 at some electric fields E,. Their values can be obtained 
analytically from the equation det H = 0 although it is of fourth order in E, but the 
solutions have a rather complicated form 

E, = { P  & J [ ( P  - 4 ~ ~ A ~ s i n ~ o X ) ] } / ( 2 ~ ~ A ~ s i n ~ w ) ,  (20) 
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where 
-n2B/2 - 2d7, Y x =  

(1 - 8/n2)d2  

339 

and 

The solutions exist if 

Y = 4J[a4B2/4 + (32 - 2 ~ ~ ) B d y l  + 4d2y:J. 

EOAEsinZw > ( I  - 8/n2)P2d2/ ( -2n2B - Sdy, + Y ) .  

(22) 

(23) 

This means that there is no deformation if A& G 0. Three types of behaviour for the 
layer can be distinguished. If the dielectric anisotropy is negative, then there exists a 
single negative threshold. The layer can be deformed by the field directed antiparallel 
to the initial position of the polarization vector, whereas it remains stable under the 
parallel field. The deformation is due to the coupling between P and E, and occurs 
if this coupling prevails over the dielectrically forced stabilization. (As mentioned 
earlier, there is no deformation for negative dielectric anisotropy with too high a 
magnitude.) Depending on the relative magnitudes of y , ,  P ,  d and B, two kinds of 
transitions can take place: the direct switching process to the state characterized by 
a reversed polarization and uniform director field (as in figure 3 (a)),  or the transition 
to the deformed state which relaxes after the field is turned off (as in figure 4). The 
deformed state can arise continuously or discontinuously; the corresponding JI( U )  
and 4 ( U )  functions do not differ from the curves shown in figures 4(a) , (b) .  

The properties of the dielectric transitions are the same as we have seen previously. 

4.3. The dependence of the thresholdjield on the system parameters 
The parameters of the system have a significant influence on the values of the 

thresholds. Two kinds of surface conditions are chosen and characterized here. 

4.3.1. Signijicant polar interactions: y2  = 5 x lo-’ N/m 
The critical field for the transition from the uniform state to the splayed state, 

which is shown in figures 3 (c),  ( d ) ,  is considered. The results are illustrated in figures 
6 (a),  (e).  This type of transition occurs for specific ranges of parameters. Some rules 
concerning the influence of the parameters can be formulated. The critical field 
strength is inversely proportional to P. It is very sensitive to surface interactions and 
the elastic constant. For thick layers the threshold is inversely proportional to d. For 
thin layers, for a stiff material, or for high y I  the threshold tends to zero, because the 
transition tends towards the type shown in figure 3(b) .  The situation described in 
$4.1 (iv) may also prevent the transition. Examples of this effect, marked by circles 
ending the curves, can be seen in figures 6 (b), (d) , (e)  for low P ,  high y I ,  or low B. The 
transition may also become impossible if the high value of AE > 0 results in a loss of 
stability of the uniform state (see figure 6(c) ) .  

These results can be compared to similar data presented in [lo]. The evident 
discrepancy may be due to the fact that in [lo] the splayed state was assumed for 
yz = 0. 

4.3.2. Negligible polar interactions: y z  = 0 
Figures 7 (a)-(e) show the threshold as a function of the parameters for all types 

of deformation due to the spontaneous polarization. As the field strength is negative, 
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0 
0 1 

~,/ld‘Nm-’ 

-4 0 4 
AE 

5 M 

Bl1d1*N 

Figure 6. The threshold field for the transition between uniform and splayed states as a 
function of the parameters. The following set of parameters was used if not indicated 
elsewhere in the figures: B = 2 x IO-”N, P = 1 x lo-’ C/rn2, A& = - 2, w = 0.4 rad, 
y ,  = 1 x 10-6N/m, y2 = 5 x lO-’N/rn, d = 2 x 10-6m and cl = 6. I ,  yI  = 1.5 x 
10-6N/rn; 2, P = 1 x 10-4C/m2. 

its absolute value is plotted. The following approximate relations can be found: 
IE,I - y I  for small y I ,  IE,I - 1/P for high P, and IE,I - d-”, where n z 1-1-5 
depending on the surface energy. The threshold decreases with A& and increases with 
B; the last dependence is minor for low yI .  In some cases the transitions are impossible, 
these are marked by circles on the ends of the curves. The most interesting switching 
occurs for stiff materials with moderate polarization, weakly anchored at the bound- 
aries and confined in a layer of moderate thickness. The threshold for dielectric 
deformation is almost independent of y I ,  proportional to P (for high P), and very high 
for small As. 

5. Tilted smectic layers 
The smectic layers may not be ideally perpendicular to the boundary plates but 

slightly tilted, making an angle a with the normal to the plates. Because of the equality 
of the angles x and I), the free energy G can be treated as a function of two variables, 
$ and (, which define the azimuthal angle @(z) 

where $o denotes the initial value of resulting from the geometric relation 

sin $o = tan ultan o. (25) 
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LIE 
5 lo 1 2  

B/l@vN 

34 1 

,re 7.  The absolute value of the threshold field for non-polar surface interactions. The 
following set of parameters is used if not indicated elsewhere in the figures: 
B = 6 x 10-I2N, P = 1 x 10-5C/m2, AE = - 1 ,  o = 0.4rad, yI = 1 x IO-'N/m, 
y 2  = 0, d = 2 x m and E~ = 6. Full line, switching; dashed line, continuous defor- 
mations; dotted line, deformations with hysteresis; thin line, dielectric deformations. 1 ,  
AE = 1 ;  2, y ,  = 1 x 10-6N/m; 3, B = 2 x 10-I2N. 

In order to simplify and shorten the calculations, the influence of the polarization 
charge is neglected, and the free energy per unit area, G, is expressed as 

4 2  

- 4 2  
G = { ~ ( d ~ / d z ) '  - 2qBsina(da/dz) + Bq2 

- AEEE'(COS o sin a - sin o sin @ cos a)* - 2 PE cos 0 cos a}  d, 

- 2 y ,  cos2 (& + Ic/)cos'a. 

Its expansion in a Taylor series contains the even powers as well as the odd. As 
previously, the normalization reduces this expansion to the form with one essential 
variable, equivalent to the butterfly catastrophe. The results are exemplified in figure 
8 (a )  for the case of switching. The small deformation exists also in the absence of the 
field and the threshold character of the switching is retained. The transitions to the 
deformed state are continuous. The dielectric transitions are continuous too, as shown 
in figure 8 (b).  

6. Concluding remarks 
In this paper, the bulk deformations of the director field were considered by using 

a one dimensional model. The effect of switching was treated as the rotation of the 
director. Its distribution was assumed to take the simplified form given by equation 
( 1  3). The effect of this type can take place if the surface interactions are not too strong. 
Only under this assumption can the switching be described by equation (13). In the 
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- 0.4 0 3 4 5 
UIV  U IV  

Figure 8. The effect of the tilt angle a = 0.01 rad, B = 2 x 10-I2N, P = 1 x lo-’ C/m2, 
w = 0.4rad, y I  = 1 x 10-6N/rn, yz  = 0, d = 2 x 10-6rn. (a) the switching transition 
A,? = -2; (b)  the dielectric transition At = 4. 

opposite case other kinds of distortion take place. The significance of this limitation 
is illustrated by the results shown in figure 7. 

A variety of transitions induced by the electric field in ferroelectric liquid crystal 
layers can be predicted on the basis of the stationary states found in this work. The 
results have a qualitative character; this is inherent in the method based on catastrophe 
theory. Only the critical points and their neighbourhoods are determined correctly, 
although this is sufficient to predict the behaviour of the system in most cases. The 
results correspond to the behaviour found in earlier work (e.g. [4,5]). 

The calculations for a function of three variables are much more laborious than 
for a function of two variables. The complexity of the calculus increases drastically, 
if the tilt of the smectic layers is introduced. Odd terms appear in the Taylor expansion 
and all of the coefficients are more complicated. Therefore the tilt is only considered 
if y z  = 0, when two variables are sufficient. 

The strong polar surface interactions should result in the chevron structure, which 
seems to require six variables for complete modelling of the deformation. Therefore 
the sharp bending of the smectic layers due to this structure is ignored here. Nevertheless 
the stationary states predicted for flat layers are analogous to the states occurring in 
the chevron structure. This analogy was utilized by Hiji et al. in [19]. It can be applied 
also to the case of switching between three stable states observed by Johno et al. [20]. 
The role of the tilt in the polar interaction case, e.g. in the chevron structure, can be 
predicted on the basis of the results presented in 55. The curves are rounded smoothly, 
and in some cases the transitions became continuous. 

The chiral smectic C structure was assumed to be unwound by the surface 
interaction. Because of this assumption the chirality q does not enter in the coefficients 
of the Taylor expansion. 

In some work, the role of the polarization space charge was discussed (e.g. in 
[7,8]). This charge manifests itself by the lowering of the electric field required for the 
transition from the splayed state to the uniform state, and, in some cases, by destab- 
ilization of the splayed state. These effects were found here in agreement with [7]. The 
critical field strengths and the condition (19) are not affected by the charge. 

The method applied in this paper leads to elementary but sometimes rather large 
expressions, resulting from the normalization procedure of the Taylor series. Numerical 
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calculations are necessary to obtain their values. The analytical formulae for the 
coefficients a, would be instructive but using them is impractical because of their 
complexity. However, even the numerical route yields useful systematization of the 
possible types of stationary states. 
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